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This paper describes a detailed derivation of a structural model for an

icosahedral quasicrystal based on a primitive icosahedral tiling (three-

dimensional Penrose tiling) within a statistical approach. The average unit cell

concept, where all calculations are performed in three-dimensional physical

space, is used as an alternative to higher-dimensional analysis. Comprehensive

analytical derivation of the structure factor for a primitive icosahedral lattice

with monoatomic decoration (atoms placed in the nodes of the lattice only)

presents in detail the idea of the statistical approach to icosahedral quasicrystal

structure modelling and confirms its full agreement with the higher-dimensional

description. The arbitrary decoration scheme is also discussed. The complete

structure-factor formula for arbitrarily decorated icosahedral tiling is derived

and its correctness is proved. This paper shows in detail the concept of a

statistical approach applied to the problem of icosahedral quasicrystal

modelling.

1. Introduction

Primitive icosahedral tiling [PIT, also known as Amman–

Kramer–Neri tiling (Kramer & Neri, 1984), or simply

Ammann tiling (Steurer & Deloudi, 2009)] allows an aperiodic

space coverage with icosahedral symmetry (Levine & Stein-

hardt, 1986; Steinhardt & Ostlund, 1987; Baake & Grimm,

2013). It can be used as a model set for three-dimensional

aperiodic icosahedral quasicrystals (i-QCs) with Laue class

m35 (a Platonian icosahedron is shown in Fig. 1a). As an

aperiodic tiling, PIT gives a sharp diffraction pattern, which is

characteristic of all crystalline and quasicrystalline phases [for

the mathematical theory of diffraction of aperiodic structures

see Baake & Grimm (2013)]. Icosahedral quasicrystals, first

obtained by Shechtman et al. (1984), are most common among

all quasicrystalline phases (Steurer & Deloudi, 2009). As a

simple analogue to thick and thin rhombuses in rhombic

Penrose tiling, PIT consists of two golden rhombohedra as

structural units – acute and obtuse, denoted as AR and OR,

respectively (Levine & Steinhardt, 1984, 1986). They are built

from golden rhombuses as facets and their volume ratio is � �
1.618 (the golden mean). In that sense PIT may be considered

as a three-dimensional generalization of the rhombic Penrose

tiling used for modelling two-dimensional decagonal quasi-

crystals and called three-dimensional Penrose tiling (Yama-

moto, 1996; Steurer & Deloudi, 2009).

The structural modelling of quasicrystals can be described

within the higher-dimensional approach. Its main idea is that

the low-dimensional aperiodicity vanishes after lifting the

structure up to high dimensions (de Bruijn, 1981; de Wolff et

al., 1981). The real structure is obtained by a projection of the

higher-dimensional periodic set of points onto the lower-
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dimensional subspace, called parallel or physical, via a certain

window (also called the atomic surface or acceptance domain).

This procedure is known as the cut-and-project method.

Choosing a proper window allows the reconstruction of

quasicrystalline symmetry. The window for PIT has the shape

of a Keplerian triacontahedron (KTH, see Fig. 1b). The atomic

structure is retrieved by modelling (subdividing) the window.

The main advantage of the higher-dimensional approach is its

mathematical simplicity. However, it considers atoms to be

stretched to multidimensional objects in nD space, which has

no direct physical meaning. Including such phenomena as

structural defects may also not be straightforward in this

approach (Kozakowski, 2007).

A commonly used way to model i-QCs within the higher-

dimensional method is the cluster-based approach. The idea is

to consider the hierarchical packing of atomic clusters. Here,

the polyhedral shells are frequently used to build clusters. The

cluster analysis was successfully applied to structure solution

and refinement of many i-QCs, e.g. the binary i-Cd–Yb system

(Takakura et al., 2007). The clusters in this structure are

centred at the so-called 12-fold vertices – a subset of PIT

nodes (PIT is considered as a framework structure) (Taka-

kura, 2008). For that reason the statistical approach based on

PIT seems to be promising in terms of the structure refinement

of the binary i-Cd–Yb.

The statistical approach developed by Wolny (1998a,b)

allows the structure solution in physical space only. The

average unit cell concept (AUC) is used as a basic idea behind

this approach. The AUC is defined as a distribution of

projections of atomic positions on the so-called reference

lattice, which is periodic. The detailed theoretical description

of the method can be found in Wolny (1998a), Kozakowski &

Wolny (2010) and Wolny et al. (2011). The AUC concept was

successfully applied to the structure characterization of

decagonal quasicrystals in Al–Ni–Co (Kuczera et al., 2011) and

Al–Cu–Me (Me = Co, Rh, Ir) (Kuczera et al., 2012) systems,

also at high temperatures (Kuczera et al., 2014).

In this paper the AUC concept is applied to derive the

structure-factor formula for an icosahedral model structure

based on PIT (with monoatomic and arbitrary decoration).

First attempts to obtain the decoration scheme for i-QCs

based on PIT were made by Strzałka & Wolny (2014). The

diffraction pattern calculated using the structure-factor

formula derived here is compared with the results obtained by

other methods (higher-dimensional approach and numerical

calculations considered as the ‘reference’ data).

2. Higher-dimensional description

2.1. Direct space

The periodic (cubic) arrangement of atoms in six-dimen-

sional direct space V is now considered. The six-dimensional

vector basis of the direct space V can be chosen as (Steurer &

Deloudi, 2009)
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where a� is a constant (set equal to 1 in further calculations).

Both the space and its vector basis will be denoted in the same

way throughout the paper.

The first three components of each vector di denoted as dki
span a Platonian dodecahedron (Fig. 1c), pointing towards the

centres of its six walls. They define a three-dimensional

subspace – the so-called parallel space (or physical space,

both terms will be used interchangeably in this paper). The

last three components denoted as d?i span the so-called

perpendicular space. The projections of 64 vertices of a six-

dimensional hypercube (periodic unit cell in six dimensions)

on the three-dimensional perpendicular subspace (via vector

basis d?i ) give 32 vertices of KTH (Fig. 1b) – the window

known for PIT.
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Figure 1
(a) Platonian icosahedron – a solid with 20 faces of equilateral triangular
shape and 12 vertices. It has six fivefold, ten threefold and 15 twofold
symmetry axes and 15 symmetry planes. The non-crystallographic Laue
class related to icosahedral symmetry is m35. (b) Keplerian triaconta-
hedron (KTH) – solid object with 30 golden rhombuses on faces and 32
vertices. It has the same symmetry elements as the icosahedron. (c)
Keplerian dodecahedron – a polyhedron dual to a Platonian icosahedron.

Figure 2
The reciprocal basis V� of the six-dimensional hypercubic space.
Components d�ki span the three-dimensional parallel subspace and d�?i
span the three-dimensional perpendicular one. Basis V� describes well the
icosahedral symmetry (in particular fivefold axes).



2.2. Reciprocal space – indexing scheme for diffraction
pattern

The diffraction pattern is a reciprocal-space image of the

structure. The relation of the reciprocal and direct basis is

simply

did
�
j ¼ �ij; ð2Þ

where d�j ð j ¼ 1; . . . ; 6Þ is the set of basis vectors of six-

dimensional reciprocal space V� and �ij is the Kronecker delta.

The explicit form of basis V� is

d�1 ¼ a�
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The basis V� chosen as above reflects the icosahedral

symmetry of the diffraction pattern. Parallel- and perpendi-

cular-space components of basis V� (defined analogously to

the V-space basis) span the vertices of a Platonian icosahedron

(Fig. 2). Every diffraction peak can be indexed in the V�

basis using six integers. Also, another set of basis vectors can

be used to define a reciprocal space, that is a set of

six-dimensional Cartesian vectors b�i ði ¼ 1; . . . ; 6Þ of the

reciprocal-space basis B�. The relation between the two basis

vector sets is given by the following transformation (vectors b�i
and d�i are column vectors) (Steurer & Deloudi, 2009):
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ð4Þ

and the graphical interpretation is shown in Fig. 3.
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Figure 3
The relation between ‘icosahedral’ basis V� and Cartesian basis B� of the
reciprocal space – parallel components. The ends of vectors d�ki are
marked with full circles. Vectors b�ki with even indices are �-times larger
than those with odd indices. The origin for both V� and B� is the centre of
an icosahedron.

Table 1
Basis vectors b�i components and lengths.

Symbols ‘k’ and ‘?’ refer to the parallel and perpendicular subspace, respectively. A simple identity � ¼ 2 cosð�=5Þ was used in equations (3) and (4).

Length
Basis
vectors b�ki b�?i b�ki ¼ jb

�k

i j b�?i ¼ jb
�?
i j

b�1
1
4 sin �½2� � 1; ð2� �Þð� þ 2Þ1=2; 0� 1

4 sin �½2� � 1; ð2� �Þð� þ 2Þ1=2; 0�
2

ð� þ 2Þ1=2
sin � ’ 0:526

2�

ð� þ 2Þ1=2
sin � ’ 0:851

b�2
1
4 sin �½� þ 2; ð� � 1Þð� þ 2Þ1=2; 0� 1

4 sin �½� � 3;�ð� þ 2Þ1=2; 0�
2�

ð� þ 2Þ1=2
sin � ’ 0:851

2

ð� þ 2Þ1=2
sin � ’ 0:526

b�3
1
4 ½�ð� � 1Þ sin �; ð� þ 2Þ1=2 sin �; 2� 2 cos �� 1

4 ½�� sin �;�ð� � 1Þð� þ 2Þ1=2 sin �; 2þ 2 cos ��
2

ð� þ 2Þ1=2
sin � ’ 0:526

2�

ð� þ 2Þ1=2
sin � ’ 0:851

b�4
1
4 ½� sin �; �ð� þ 2Þ1=2 sin �; 2 cos �� 1

4 ½sin �;��ð� þ 2Þ1=2 sin �;�2 cos ��
2�

ð� þ 2Þ1=2
sin � ’ 0:851

2

ð� þ 2Þ1=2
sin � ’ 0:526

b�5
1
4 ½ð2� �Þ sin �; �ð� � 1Þð� þ 2Þ1=2 sin �; 2 cos �� 1

4 ½�ð� þ 1Þ sin �; �ð� þ 2Þ1=2 sin �;�2 cos ��
2

ð� þ 2Þ1=2
sin � ’ 0:526

2�

ð� þ 2Þ1=2
sin � ’ 0:851

b�6
1
4 ½ð� � 1Þ sin �;�ð� þ 2Þ1=2 sin �; 2þ 2 cos �� 1

4 ½� sin �; ð� � 1Þð� þ 2Þ1=2 sin �; 2� 2 cos ��
2�

ð� þ 2Þ1=2
sin � ’ 0:851

2

ð� þ 2Þ1=2
sin � ’ 0:526



Some features of vectors b�i important for the next para-

graphs are discussed below. First, Table 1 shows the coordi-

nates of vectors b�i in expanded form.

An interesting dependence of parallel- and perpendicular-

space components of vectors b�i arises. Parallel-space vectors

b�k2 ; b�k4 ; b�k6 are �-times larger than b�k1 ; b�k3 ; b�k5 , whereas

vectors b�?2 ; b�?4 ; b�?6 are �-times smaller and have the oppo-

site sign with respect to b�?1 ; b�?3 ; b�?5 . Moreover, the vectors

have the same lengths within the above-mentioned triplets.

The contents of Table 1 can be simplified as follows:

b�k2;4;6 ¼ �b�k1;3;5 b�k2;4;6 ¼ �b�k1;3;5 ¼
2�

ð� þ 2Þ1=2
sin � ’ 0:851;

b�?2;4;6 ¼ �
1
� b�?1;3;5 b�?2;4;6 ¼

1

�
b�?1;3;5 ¼

2

ð� þ 2Þ1=2
sin � ’ 0:526:

ð5Þ

The indexing scheme may now be expressed in basis B�. Every

diffraction peak can be described by a reciprocal-space vector

G ¼ ½k; k?� (in six-dimensional reciprocal space):

k ¼ h1 þ �h2ð Þb�k1 þ h3 þ �h4ð Þb�k3 þ h5 þ �h6ð Þb�k5 ;

k? ¼ h2 � �h1ð Þb�?1 þ h4 � �h3ð Þb�?3 þ h6 � �h5ð Þb�?5 ; ð6Þ

where h1; . . . ; h6 are diffraction peak indices (integers). The

property in relation (5) was used. For convenience, the sign ‘||’

was omitted for the parallel-space vector k.

It is worth mentioning that the transformation (4) is linear.

As a result, the direct-space basis B corresponding to the new

setting of reciprocal basis B� (vectors b�i ) also transforms

linearly with V. This means that the shape of a window in basis

B is also given by a triacontahedral shape, but linearly trans-

formed (rotated and scaled). The Cartesian basis setting will

be useful in the next paragraphs for derivation of the refer-

ence lattice and AUC for PIT.

3. Average unit cell approach

To construct the AUC a reference lattice is needed. It must be

periodic in three-dimensional parallel space. It is known

(Wolny, 1998a) that for quasicrystalline structures one needs

to use two reference lattices, for which the lattice parameters

differ by a factor �. The positions of every node of PIT can be

expressed using the reference lattice constants as follows:

x ¼ �1�k1 þ ux

y ¼ �2�k2 þ uy

z ¼ �3�k3 þ uz

x ¼ �1�q1 þ vx

y ¼ �2�q2 þ vy

z ¼ �3�q3 þ vz

ð7Þ

where x; y; z are the physical-space positions of PIT nodes;

�ki; �qi ði ¼ 1; 2; 3Þ are the lattice constants in three directions

for two reference lattices associated with the subscripts k and

q; �i; �i ði ¼ 1; 2; 3Þ are integers; ux; uy; uz; vx; vy; vz are

remainder components of the projections of PIT positions

onto the reference lattices with respect to the nearest nodes

(new positions of PIT in the reference lattice), and their values

vary from 0 to �ki or �qi, respectively.

The AUC is the distribution Pðux; uy; uz; vx; vy; vzÞ of

projections of PIT nodes on the reference lattices. The lattice

constants can be, in general, arbitrarily chosen. However, it is

reasonable to associate them with the set of reciprocal-space

vectors used for indexing the diffraction pattern. Let us then

write

�ki ¼
2�

k0i

; �qi ¼
2�

q0i

; i ¼ 1; 2; 3; ð8Þ

where k0i; q0i are the lengths of k0i; q0i ði ¼ 1; 2; 3Þ used for

indexing in reciprocal parallel space (the index ‘k’ in the

superscript is omitted). Since we choose �ki ¼ ��qi, vectors

q0i ¼ ð1=�Þk0i are called modulation vectors, whereas k0i are

reciprocal-space vectors. The � relation used here is typical for

this type of quasicrystal.

For convenience, the orthogonal set of vectors k0i and q0i is

expected. Therefore, Cartesian basis B� [see equation (5)] can

be used to construct the reference lattices. We define vectors

k0i; q0i as parallel to vectors b�ki with shorter lengths b�ki = sin �
and rescaled by 2�. Analogously, as their perpendicular-space

counterparts k?0i; q?0i, rescaled vectors b�?i will be used. The �
relation between reciprocal-space and modulation vectors is

preserved due to the properties of vectors b�i discussed in x2.2.

The vector basis chosen for further consideration within the

statistical approach is presented below (for comparison, see

Table 1):

q01 ¼ q0; 0; 0
� �

; q02 ¼ 0; q0; 0
� �

; q03 ¼ 0; 0; q0

� �
q?01 ¼ ½�q?0 ; 0; 0�; q?02 ¼ 0;�q?0 ; 0

� �
; q?03 ¼ 0; 0;�q?0

� �
k01 ¼ k0; 0; 0

� �
; k02 ¼ 0; k0; 0

� �
; k03 ¼ 0; 0; k0

� �
k?01 ¼ ½k

?
0 ; 0; 0�; k?02 ¼ 0; k?0 ; 0

� �
; k?03 ¼ 0; 0; k?0

� �
ð9Þ

where q0 = k?0 ¼ 2�=ð� þ 2Þ1=2, q?0 = k0 ¼ 2��=ð� þ 2Þ1=2. The

Cartesian coordinate system is used.

The six-dimensional reciprocal-space vector G [equation

(6)] must be redefined as follows:

k ¼ h1q01 þ h2k01 þ h3q02 þ h4k02 þ h5q03 þ h6k03

¼ h1 þ �h2ð Þq01 þ h3 þ �h4ð Þq02 þ h5 þ �h6ð Þq03

k? ¼ h1k?01 þ h2q?01 þ h3k?02 þ h4q?02 þ h5k?03 þ h6q?03

¼ h2 � �h1ð Þq?01 þ h4 � �h3ð Þq?02 þ h6 � �h5ð Þq?03:

ð10Þ

Formally, the indices h1; . . . ; h6 used in (10) are not equivalent

with those in (6), but it is not relevant.

3.1. Properties of the AUC

In this section we show important properties of the AUC for

PIT. Let us consider the six-dimensional definition of reci-

procal space:

expðiG � RÞ ¼ 1; ð11Þ

where R is the position of a node of PIT in six-dimensional

hyperspace and G is the six-dimensional reciprocal-space

vector, as previously. R = ½rk; r?� = ½x; y; z; x?; y?; z?�, where

rk represents the physical-space position of a point in PIT and

r? stands for a position in the window (perpendicular space).

Considering relations (9) and (10) we can write
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G � R ¼
P

i¼1;3;5

hi q0ir
k þ q?0ir

?
� �

þ
P

j¼2;4;6

hj k0jr
k þ k?0jr

?
� �

: ð12Þ

For the components rk we can use the reference lattice system

(7) and relation (8). The expressions from equation (12) in

expanded form are

h1q01 � r
k
¼ h1 q0; 0; 0

� �
� x; y; z½ � ¼ h1q0x ¼ h1q0 �1�q1 þ vx

� �
¼ h1q0 �1

2�

q0

þ vx

� �
¼ 2��1h1 þ h1q0vx

h2k01 � r
k
¼ h2 k0; 0; 0

� �
� x; y; z½ � ¼ h2k0x ¼ h2k0 �1�k1 þ uxð Þ

¼ h2k0 �1

2�

k0

þ ux

� �
¼ 2��1h2 þ h2k0ux

h1q?01 � r
?
¼ h1 �q?0 ; 0; 0

� �
� x?; y?; z?
� �

¼ �h1q?0 x?

h2k?01 � r
? ¼ h2 k?0 ; 0; 0

� �
� x?; y?; z?
� �

¼ h2k?0 x? ð13Þ

and analogously for the rest of the components of the sum

(12).

It is easy to see that terms like 2��1h1 or 2��1h2 vanish in

the exponent, since �1; �1; h1; h2 are integers. We can then

rewrite (12) in the following form:

G � R ¼ h1 q0vx � q?0 x?
� �

þ h2 k0ux þ q?0 x?
� �

þ h3 q0vy � q?0 y?
� �

þ h4 k0uy þ k?0 y?
� �

þ h5 q0vz � q?0 z?
� �

þ h6 k0uz þ k?0 z?
� �

: ð14Þ

The formula (11) is satisfied for any indices h1; . . . ; h6. The

zeroing condition for (14) yields

vx ¼
q?0
q0

x? ¼ �x? ux ¼ �
k?0
k0

x? ¼ �
1

�
x?

vy ¼
q?0
q0

y? ¼ �y? uy ¼ �
k?0
k0

y? ¼ �
1

�
y?

vz ¼
q?0
q0

z? ¼ �z? uz ¼ �
k?0
k0

z? ¼ �
1

�
z?

: ð15Þ

We obtained a proof that the shapes of distributions

Pðux; uy; uzÞ and Pðvx; vy; vzÞ are the same as the shapes of the

window, i.e. the KTH, but linearly scaled [for more details on

the shapes of the AUC for different basis vectors, see Strzalka

et al. (2013)]. Fig. 4 presents graphically the results from (15).

Another important fact is that components vi and

ui ði ¼ x; y; zÞ are not independent. Substituting x?; y? and z?

in the left triples of (15) with the ones obtained from the right

gives

vx ¼
q?0
q0

x? ¼
q?0
q0

�
k0

k?0

� �
ux ¼ ��

2ux

vy ¼
q?0
q0

y? ¼
q?0
q0

�
k0

k?0

� �
uy ¼ ��

2uy

vz ¼
q?0
q0

z? ¼
q?0
q0

�
k0

k?0

� �
uz ¼ ��

2uz

ð16Þ

where the relations (9) were used.

Relation (16) means that the full distribution

Pðux; uy; uz; vx; vy; vzÞ is non-zero only for segment lines

vi ¼ ��
2ui. This scaling property reduces the dimensionality

of the AUC to 3. It is known in the literature as TAU2 scaling

(Wolny et al., 2013). Since (16) is known, the marginal distri-

bution Pðux; uy; uzÞ itself will be considered as the AUC in

further steps.

3.2. Numerical derivation of the AUC

The numerical calculations confirm all analytical results

obtained in x3.1. In the following sequence of pictures one can

see about 200 000 points of the AUC calculated numerically.

From Fig. 5(a) we conclude that in both cases the AUC shape

is given by KTH. More detailed analysis is shown in Figs. 5(b),

5(c). Numerical calculations also confirm the characteristic

scaling in the viðuiÞ relation (Fig. 6).

4. Diffraction pattern

The diffraction pattern for PIT consists of sharp peaks. Their

intensities can be calculated as the squared modulus of the

structure factor (we consider a purely geometrical definition

of the structure factor). The structure factor is the Fourier

transform of atomic positions in a crystal structure:

F kð Þ ¼
P

j

f j exp ik � rkj
� �

; ð17Þ

where k is the reciprocal vector in physical space [the parallel

component of the six-dimensional vector G, see (10)], rk is the

position of the jth atom and fj is an atomic form factor of atom

j. For simplicity, in further derivation all decorating atoms are

considered to be the same and their form factors are set to 1.

The atomic arrangement in physical space is not known, the

idea would be to model the structure in perpendicular space

(higher-dimensional approach). Considering (11) and (12),

G � R ¼ k � rk þ k? � r? ¼ 0 ! k � rk ¼ �k? � r? ð18Þ

and the formula (17) turns into
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Figure 4
The window (black) in B basis and the AUC (red) for PIT. The ‘skeleton’
of KTHs (parallel layers spanned by five vertices) is shown for better
comparison of shapes. The blue layer is common for both. It is easy to see
that the two shapes are related by the scaling factor �1=�.



F kð Þ ¼
R
W

exp �ik? � r?
� �

d3r?: ð19Þ

Because we deal with a dense and continuous distribution of

points in perpendicular space, summation in (17) can be

replaced by integration limited to the shape of a window (W).

4.1. The structure factor within the AUC approach

The structure factor can also be expressed in physical space

using the statistical approach. The exponent in (17) can be

written in physical space by using (7) and based on the

discussion in x3.1. Moreover, applying (15) and (16) gives

k � rk ¼ h1q0vx þ h2k0ux þ h3q0vy þ h4k0uy þ h5q0vz þ h6k0uz

¼ h1

k0

�
��2ux

� �
þ h2k0ux þ h3

k0

�
��2uy

� �
þ h4k0uy

þ h5

k0

�
��2uz

� �
þ h6k0uz

¼ k0 h2 � �h1ð Þux þ h4 � �h3ð Þuy þ h6 � �h5ð Þuz

� �
:

ð20Þ

The structure-factor formula expressed in physical space reads

F kð Þ ¼
R

AUC

exp iv � uð Þ d3u

v ¼ 	x; 	y; 	z

� �
¼ k0 h2 � �h1ð Þ; h4 � �h3ð Þ; h6 � �h5ð Þ

� �
u ¼ ux; uy; uz

� �
¼ �

1

�
x?;�

1

�
y?;�

1

�
z?

� 	
; ð21Þ
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Figure 5
(a) Numerically obtained 200 000 points of the AUC calculated for a reference lattice constructed with vectors given by (9). The shape of the AUC is
KTH (two selected golden rhombuses as facets marked with a red contour). XY projections of numerically obtained AUC (b) and window (c) confirm
the linear dependence of the two objects (the scale is not preserved). The AUC is a dense and uniform distribution of projected atomic positions.

Figure 6
vzðuzÞ plot related to the distribution Pðux; uy; uz; vx; vy; vzÞ obtained
numerically. The slope of the linear dependence is ‘��2’, which perfectly
confirms the theoretical prediction (18).



where k0 = 2��=ð� þ 2Þ1=2. The region of integration in (21)

can be reduced to distribution Pðux; uy; uzÞ only. By definition,

each position ui is limited to the interval ð0; �kii [see formula

(7)]. The structure factor finally gets the following form:

F kð Þ ¼
R�k1

0

R�k2

0

R�k3

0

P ux; uy; uz

� �
exp iv � uð Þ d3u; ð22Þ

where �k1; �k2; �k3 are lattice constants for three directions of

the reference lattice. Formula (22) can be even further

simplified by taking into account relation (8).

4.2. Diffraction pattern for PIT

The diffraction pattern for PIT decorated in the lattice

nodes has been derived in three different ways:

(i) Numerically, as a Fourier transform of a point set in

three-dimensional physical space (atomic positions) – it plays

the role of the reference data. About 2 million points of PIT

were taken into account.

(ii) Theoretically, by analytical integration over the tria-

contahedral shape in perpendicular space [using (19)].

(iii) Within the statistical approach, by analytical integra-

tion over the triacontahedral shape of the AUC [using (22)].

To calculate the intensity of the diffraction peaks only a

‘purely geometrical’ term was used, i.e. I ¼ jFðkÞj2. The

obtained diffraction pattern has been presented for one-

dimensional reciprocal-space vector k1. All peaks are

normalized to ‘0’ peaks (peaks at the position k1 ¼ 0). The

logarithmic scale was used for more precise comparison. The

results are shown in Fig. 7.

The patterns are identical, i.e. all peak positions are the

same and the peak heights agree on all three graphs. In Fig. 8,

the jFAUCj
2=jFnumj

2 plot for about 10 000 selected peaks is

shown. It is a correlation of data from statistical and numerical

calculations. Perfect agreement is confirmed.

5. Arbitrarily decorated PIT

5.1. KTH subdivision

We proved numerically and analytically the relation

between the AUC and the window shape (KTH in both cases).

To obtain a decoration scheme we will consider a window

subdivision by means of dividing the KTH into golden

rhombohedra in the perpendicular subspace of the six-

dimensional direct space. The structure-factor formula will

however be derived within the AUC approach. It needs to be

stressed that every rhombohedron (OR or AR) at a given

orientation in physical space (where atomic arrangement is

observed) corresponds to a certain rhombohedron (AR or

OR, respectively) in perpendicular space.

There are ten orientations of ORs and ARs subdividing the

Platonian icosahedron in three-dimensional reciprocal space

(see Appendix A). The same stands for the perpendicular

subspace (window) of six-dimensional direct space. For

further considerations we have chosen two independent

orientations of ORs and ARs which are spanned by basis

vectors of the ‘icosahedral’ basis V: {d?1 , d?2 , d?6 } – OR1,

{d?2 , d?6 , �d?4 } – OR2 and {d?1 , d?3 , d?6 } – AR1, {d?2 , d?6 , �d?5 } –

AR2. The spanning vectors originate at the reference vertex,

which plays the role of a label for each rhombohedron. The

chosen orientations are equivalent with respect to fivefold

rotation symmetry along the axis defined by vector d?6 of basis

V, called the ‘z axis’ from now on.
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Figure 8
The jFAUCj

2=jFnumj
2 plot for about 10 000 peaks at different directions of

the wavevector (two-, three- and fivefold axes in reciprocal space).

Figure 7
Diffraction pattern for reciprocal-space vector k1 obtained by using three methods as described in x4.2.



Shifting rhombohedra in physical space causes a shift of

corresponding rhombohedra in perpendicular space. By

applying a simple condition that the vertices of any rhombo-

hedron in any given orientation must be located inside the

window in perpendicular space, the distributions of reference

vertices are obtained (for the results of numerical derivation

see Fig. 9). Such distributions in perpendicular space will be

called subdomains. They are the fundamental units of the

subdivision scheme. The distributions of reference vertices

belonging to ORs (ARs) cut out from the KTH subdomains

in the shape of acute (obtuse) golden rhombohedra. After

applying the fivefold symmetry we find the entire subdivision

scheme of KTH into 20 independent rhombohedral sub-

domains (Fig. 9).

The subdomains can also be defined analytically using

direct-space basis vectors. Table 2 shows the definition of

286 Radoslaw Strzalka et al. � Structure factor for an icosahedral quasicrystal Acta Cryst. (2015). A71, 279–290

research papers

Table 2
Analytical definition of vectors e1; e2; e3 spanning the subdomains for
ORs and ARs in perpendicular space.

Basis V is used. Subdomains for OR2 and AR2 are shifted from the origin of
the coordinate system.

Reference vertex
O e1 e2 e3

OR1 Origin d?3 d?5 d?4
OR2 d?1 + d?4 d?3 d?5 �d?1
AR1 Origin d?2 d?4 d?5
AR2 d?1 + d?5 d?3 �d?1 d?4

Figure 9
Subdomains in perpendicular space understood as position distribution of the reference vertices of the structural units: ORs (upper) and ARs (lower
images).

Figure 10
(a) Vectors e1, e2, e3 (in red) spanning OR in perpendicular space. (b)
Characteristic positions in rhombohedra in physical space: numbers on
edges (in squares) and vertices (in circles) correspond to Table 3.



vectors e1; e2; e3 spanning the rhombohedral subdomains at

basic orientations and their reference vertices (see Fig. 10a).

Coordinates for other orientations can be obtained by rotation

along the ‘z axis’ by an angle of 4�=5.

5.2. Structure-factor formula in the case of arbitrary
decoration

To derive the formula for the structure factor one has to

calculate the Fourier transform of each subdomain. Integra-

tion can be carried out in the oblique coordinates related to

vectors e1; e2; e3. The Fourier transform of subdomains in a

given orientation l reads

F
OR=AR
l kð Þ ¼

R
exp �ik?r?

� �
d3r?

¼ V
RX

XO

dx
RY

YO

dy
RZ

ZO

exp �iðq1xþ q2yþ q3zÞ
� �

dz;

ð23Þ

where qj ¼ k?ej, j 2 f1; 2; 3g, ej, j 2 f1; 2; 3} are vectors

spanning the subdomains defined as in Fig. 10(a), r? =

xe1 þ ye2 þ ze3, V = je1ðe2 � e3Þj is the volume of a subdo-

main spanned by vectors e1; e2; e3. X;Y;Z are coordinates of

the vertices of subdomains defined as in Fig. 10(a) in the

oblique reference system (i.e. the lengths of vectors e1; e2; e3;

see Table 2), and XO;YO;ZO are coordinates of the reference

vertices of subdomains (see Table 2).

The exact results of analytical integration in (23) for eight

different cases of qj values can be found in Appendix B.

As a last step we need to find the fraction of an atom inside

the structural unit (denoted as �j for atom j). For atoms placed

on the faces of ORs or ARs: �j ¼ 1=2. Fraction �j for an atom

located on the edge is equal to 
=2�, where 
 is a plane angle

between faces adjacent to this edge. In the last case – an atom

located on a vertex – the fraction is defined as �=4�, where �
is a solid angle between edges meeting at the considered

vertex. The angle � can be calculated with a formula given in

van Oosterom & Strackee (1983):

tan
�

2

� �
¼

a� bð Þ � c


 



abcþ a � bð Þcþ a � cð Þbþ b � cð Þa
; ð24Þ

where a; b; c; a; b; c are vectors determining a vertex and their

lengths.

Table 3 shows fractions calculated as discussed above.

The subdivision scheme for the shape of the AUC is the

same as derived in x5.1. Similarly, the Fourier transforms of

subdomains as defined in (23) can be expressed within the

statistical method. Based on the discussion in xx5.1 and 5.2 we

are finally able to derive a full structure-factor formula for

arbitrarily decorated structural units of PIT within the statis-

tical approach:

FðvÞ ¼
P10

l¼1

F vð ÞOR
l

PN1

j¼1

f j�j expðik � rl
jÞ

" #

þ
X10

l¼1

F vð ÞAR
l

XN2

j¼1

f j�j expðik � rl
jÞ

" #
; ð25Þ

where v ¼ k0½ðh2 � h1�Þ; ðh4 � h3�Þ; ðh6 � h5�Þ�, h1; . . . ; h6

are integer indices, and N1;N2 are the number of atoms

decorating ORs and ARs, respectively. FðvÞOR
l =FðvÞAR

l is the

Fourier transform of the subdomain related to OR/AR at a

given orientation l in physical space, fj the atomic form factor

of the jth atom, �j the fraction of the jth atom decorating the

structural unit, and rl
j the position of atom j in the structure

unit with respect to a reference vertex.

FðvÞOR
l , FðvÞAR

l are calculated using formula (23) under

constraints given in Table 2 within the statistical approach.

Such calculations are consistent with the ones performed in

perpendicular space, as proved in x4.2.

The diffraction pattern along five-, three- and twofold

symmetry axes was calculated using formula (25). For the

reason of complexity of possible decoration schemes for

i-QCs, the simplest case of monoatomic decoration at the

vertices of rhombohedra was considered. Peak intensities

(I ¼ jFðvÞj2) have been compared with corresponding ones

calculated numerically over 77 000 points of PIT in the log–log

plot (Fig. 11). All peaks with indices ranging from �5 to 5

appearing in the diffraction pattern are included. The

correctness of the obtained structure factor (25) is fully

confirmed for that simple case.

6. Conclusions

The comprehensive description of the statistical method

applied to primitive icosahedral tiling as a model of an

icosahedral quasicrystal was introduced in this paper. The

research papers

Acta Cryst. (2015). A71, 279–290 Radoslaw Strzalka et al. � Structure factor for an icosahedral quasicrystal 287

Figure 11
Correlation between peak intensities calculated numerically and using
formula (25).

Table 3
Fractions �j of atoms decorating structural units.

The numbers in the first row are labels of the characteristic locations in the
unit as defined in Fig. 10(b).

1, 7 2, 3, 5, 8 4, 6 9, 19 10, 13, 15, 20 11, 17 12, 14, 16, 18

OR 0.05 0.15 0.15 0.2 0.2 0.3 0.3
AR 0.05 0.05 0.35 0.4 0.1 0.1 0.4



average unit cell concept was used for derivation of the

structure factor. In the first part, the application of the

statistical method to PIT was shown with all mathematical

details and the structure factor for monoatomic decoration

was derived. All calculations were made in three-dimensional

physical space in contrast to the higher-dimensional method. It

was shown that, for a proper choice of vectors spanning the

reference lattice, the shape of the AUC is exactly the same as

that of the window constructed in perpendicular space within

the cut-and-project method. The diffraction patterns obtained

in three different ways (numerically, higher-dimensional

analysis and statistical description) were compared. Full

agreement of patterns was shown, which proves the correct-

ness of the statistical approach and its equivalence to the

higher-dimensional method. Our approach, however, has the

advantage of enabling the calculation in physical space.

In the second part, the structure-factor formula for arbi-

trarily decorated PIT (atoms placed in the vertices, edges or

inside the structural units) was derived. For this purpose, a

subdivision scheme of a window in perpendicular space

(equivalent to subdivision of the AUC) was introduced in

detail. This results in a definition of 20 symmetrically inequi-

valent subdomains dividing the Keplerian triacontahedra.

Each of them represents a certain orientation of obtuse or

acute golden rhombohedra considered as structure units of

PIT and filling the three-dimensional physical space in an

aperiodic way with icosahedral symmetry. The complete

structure-factor formula (25) was derived in physical space

within the AUC approach. The information about long-range

order in the system is expressed by Fourier transform of the

structural units – ORs and ARs [terms FðvÞAR and F½vÞOR in

(25)], whereas atomic decoration of the units is revealed in the

phase factors [exponentials in (25)]. In other words, the full

structural information of the system is expressed by the

formula (25). The correctness of the formula obtained was

confirmed against numerical ‘reference’ data for structural

units decorated in vertices.

The structure-factor formula is ready to be applied to the

refinement procedure of the real structure of i-QCs. First, the

so-called simple decoration model (Henley & Elser, 1986) will

be considered and then structure refinement of systems like

i-Cd–Yb (Takakura et al., 2007) will be attempted.

APPENDIX A
Orientations of structural units

In this part we show that only ten orientations of ORs and

ARs in three-dimensional reciprocal space are inequivalent.

This observation is also true for three-dimensional physical

space. Let us perform the symmetry consideration in reci-

procal space, where the basis vectors B� span a Platonian

icosahedron (Fig. 3). Each OR is spanned by vectors d�1; d�2; d�6
and each AR by vectors d�1; d�3; d�6 [the reciprocal basis is

defined by relation (3)]. The definition of ORs and ARs in

physical space is analogous.

Although there are only two independent units, they can

both occur in different orientations induced by icosahedral

symmetry. In order to designate the number of inequivalent

orientations and positions of rhombohedra let us have a closer

look at the shape of an icosahedron. ORs can be labelled by

the faces of an icosahedron (vectors spanning rhombohedra

are pointing towards vertices of the icosahedron) and grouped

according to the fivefold symmetry axis. In Fig. 12 the

projections of ORs onto faces of an icosahedron are

presented.

An icosahedron has 20 faces; therefore 20 independent

orientations of ORs are technically possible. However, the

inversion symmetry limits the number of independent orien-

tations to ten. According to Fig. 12, ORs belonging to a group

of faces marked with crosses are equivalent to the ones

marked with stripes. The same applies to faces marked with

circles and a grid.

The orientations of ARs can also be presented as projec-

tions on the facets of an icosahedron. Six possible orientations
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Figure 12
Orientations of ORs adjacent to faces of a Platonian icosahedron. Four
groups of ORs symmetrically equivalent with respect to the fivefold
rotation axis are distinguished. Each face being representative of the
group is marked with a different pattern. Inversion neglected.

Figure 13
Possible orientations of ARs represented as corresponding faces of an
icosahedron. Inversion neglected.



invariant to the inversion centre are presented in Fig. 13. Each

AR occurs in five orientations according to fivefold symmetry.

That gives 30 orientations. However, still some repeating

orientations occur. This is because the two adjacent faces

representing given orientations of rhombohedra are included.

It is easy to notice that group (b) of rhombohedra can be

retrieved from group (d) by rotation by an angle of 2�=5 along

one of the fivefold axes (see Fig. 14). They share the same edge

AB which means that rhombohedra belonging to these groups

are spanned by the same two basis vectors. Moreover, vertices

C and C0 are symmetric with respect to the inversion centre of

an icosahedron, which implies that both ARs (CBA and

ABC0) are symmetrically equivalent. The same applies to

group (e), whereas groups (a), (c) and (f) represent another

orientation of ARs. Summarizing, only ten inequivalent

orientations of ARs occur under the icosahedral symmetry.

APPENDIX B
Fourier transforms of subdomains – exact results

Fourier transforms of subdomains in perpendicular space can

be calculated with formula (23). The results of integration

strongly depend on the values of qj [qj ¼ k?ej, j 2 f1; 2; 3g,

where vectors ej span rhombohedral subdomains (see Fig.

10a)]. Detailed case studies of integral (23) were performed

and the exact analytical results are shown in Table 4.
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